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1. Abstract 
 

Evaluating overall performance of a ground- and/or space-based SSA "system-of-systems" observational network 
collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-
based analysis tools.  This is further complicated by networks that have a wide variety of sensor types and 
phenomena (e.g., optical, radar and passive RF types), each having unique performance, resources, ops tempo, and 
competing customer and detectability constraints. 
 
We present details of the “Multi-phenomenology Observation Network Evaluation Tool” (MONET), which 
circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-
demand approach.  Cells of each sensor’s supply time are distributed among RSO targets of interest to determine the 
average performance of the network against that set of RSO targets.  Orbit Determination (OD) heuristics are 
invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation 
quality. 
 
To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF 
sensor physical and performance characteristics.  We then prioritize the selected RSO targets according to object 
size, active/inactive status, orbit regime, and/or other necessary considerations.  Finally, the OD-derived tracking 
demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is 
exhausted, or (b) the list of RSO targets is exhausted.  The outputs from MONET include overall network 
performance metrics delineated by sensor type and objects and orbits tracked, along with likely orbit accuracies 
corresponding to the conglomerate network tracking predicted performance. 
 

2. MONET System-Of-Systems Performance Evaluation via Digitization 
 
System performance characterization and optimization are especially vital for space object tracking network 
observations of Resident Space Objects (RSOs).  Such characterization and optimization are complicated by the 
embedded tracking geometries, sensor performance evaluation, sensor resource management, optimal scheduling, 
and sensor assignment aspects of the problem. 
 
In prior work, Dan Oltrogge conceived, designed and developed algorithms and software for an Earth observations 
system-of-systems analysis and performance evaluation program called BLINE (pronounced Bee-Line).  BLINE is a 
unique time-varying evaluation of satellite supply versus ground “target” demand, which works by digitizing (i.e., 
breaking up both observing satellite resource supply and ground target demand into “tiny bits,” and optimally 
divvying demand bits to the satellites’ “supply bits.”  BLINE is an improved version of an older, time-invariant 
analysis tool called BSPACE1, which the author also contributed to and developed.   
 
As previously noted1, conclusions from independent validations of such a supply-versus-demand digitization 
approach were that “The accuracy of the simulation has been tested and found to be within approximately 5% of that 
of a traditional deterministic simulator” and “[The digitization approach] produces results comparable to the best of 
the medium- to high-fidelity simulations currently in use. A statistical sampling approach allows excellent results to 
be obtained with far fewer computational steps than are required by an equivalent deterministic algorithm.” 
 



To illustrate how such digitization works, let’s assume a single ground target that we want to observe which is 
observable by three satellites over a given period of time during which we want to observe the ground target.  In the 
digitized world, ground target if observed (if possible), but satellite time and resources needed to observe the target 
are divvied up such that each of the three satellites spends some of its resources to observe “a part” of the ground 
target.  The amount of time and resources divvied to each of the three satellites depends on their respective 
collection rates, remaining supply, and other weighting factors (including sensor degradation due to cloud cover).  In 
stark contrast, the reality is that only one of the satellites is tasked to observe the target, and the other two satellites 
would be idle (for that target).  So, for this single target, we can see that we’ve improperly (but proportionately) 
assigned the target’s demand to three satellites when only one is actually tasked.   
 
Yet, when allocating observing sensor resources to a target deck consisting of many thousands of ground, 
independent testing confirms that breaking target demand into digitized parts properly reflects not only the resources 
each satellite spends and how many targets are collected, but it also presents an idealized optimal divvying of 
ground targets to system-of-systems constellation(s) to which the best scheduling algorithms can aspire. 
 
We realized that this same approach to optimally divvying digitized sensor supply to target observational demand 
could be applied to ground sensors looking up at targets in space, as were those successfully applied to space sensors 
looking down.  Just as the impressionist artist Claude Monet used “digitized” dots of paint that the eye can aggregate 
to see the “big picture,” we’ve developed MONET as the digitized implementation of ground or space observers 
against the hundreds of thousands of Resident Space Objects (estimated to be over 700,000 RSOs down to a size of 
1 cm) which need to be tracked for mature Space Situational Awareness (SSA). 
 

3. Optimal Demand Allocation Using the Digital Paradigm 
 
For MONET, we adopted a similar approach to optimal digital allocation of sensor supply as was used in the 
aforementioned ground-observing tools.  As previously noted1, “The Valley-Fill algorithm, invented by Dan 
Oltrogge, balances imaging supply and demand. The algorithm was developed to push the need for imaging time 
closer to the opportunities to receive it, and to distribute available resources such that all targets are supplied with 
the most imaging time available to them.”  If desired, digitized network bandwidth & buffers can also be simulated. 
 
As implemented in MONET, the steps to optimally allocate digitized supply are as follows: 
 

(1) The input RSO list is sorted such that the highest-priority RSOs are processed first; 
(2) The positions and lighting conditions for all active observing sensors are propagated at a fine mesh size (e.g. 

1 second) for the full analysis timespan (e.g. 1 year) and stored; 
(3) The “supply time” for each sensor is initialized to the amount of time each mesh grid point represents; 
(4) Each “ith” RSO: 

a. The ith RSO is initialized and positionally propagated; 
b. The full analysis timespan is stepped through in increments of the periodicity of the target demand.  For 

example, if the goal is to track an RSO three times per orbit, then the mesh grid is evaluated in sub-
meshes that are (orbit period/3) in duration. 

c. Within each sub-mesh grid point/time, sensor visibilities and (when visible) sensor collection rates are 
computed; 

d. Target demand is allocated  to all cells having legitimate target visibility (denoted with subscript “i”) 
within the sub-mesh timespan using the following sequence of steps:  
i. Accumulate their remaining supply time (Figure 1) for all cells that could successfully collect 

against all or some portion of the  target’s demand; 
ii. Sort the cells by their individual remaining supply time (Figure 2); 

iii. Attempt to put all of the target’s demand into cell #1 (with greatest remaining supply) as shown in 
Figure 3. 

iv. Progressively shift the target demand to subsequent neighboring cells until the remaining supply 
time in the utilized cells is higher than the supply time of the next adjacent neighboring cell of the 
sorted descending list (Figure 4). 

 
e. The relevant equations can be derived as follows: 

i. Assume that every “ith” cell’s Existing Demand Time (EDT) is accumulated as: 



 
Equation 1: ܦܧ ܶ ൌ ∑ ௗܦ ܹௗ ܴௗ

#ௗ	௧௧௦
ୀଵ   

 
where ܦௗ, ܹௗ

 and ܴௗ
 denote the demand, additional demand weighting(s) (e.g., inflation 

due to cloudiness) and past collection rates for all portions of target demand that this cell has 
accommodated so far; 

 
ii. Let “K” denote the constant supply time remaining, in common across all utilized cells having 

legitimate visibility, after accommodating the latest target’s demand.  Let the Existing (remaining) 
Supply Time (EST) of each “ith” cell be denoted as  ܵܧ ܶ (note that ܵܧ ܶ is by definition non-
negative), such that for any given supply cell, 

 
Equation 2: ܭ ൌ ܵܧ ܶ െ 	ܦ ܹ	ܴ = a constant value for all utilized supply cells  
 

where ܦ, ܹ and ܴ denote the demand, additional demand weighting(s) and collection rates for 
the new target; 

iii. Solving for the accommodated portion of the target’s demand ܦ, we obtain: 
 

Equation 3: ܦ ൌ
ாௌ்ି

ோௐ
 

iv. The total demand accommodated for this single target is then: 
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v. From which we can now solve for “K” assuming ்ܦ ൌ  :݀݊ܽ݉݁݀	݈݈ݑ݂ݏᇱݐ݁݃ݎܽܶ
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vi. Continue to shift demand to the next-adjacent-cell until either (a) K is less than the neighboring 
cell’s remaining supply (in which case ்ܦ ൌ  or (b) all cells with (݀݊ܽ݉݁݀	݈݈ݑ݂ݏᇱݐ݁݃ݎܽܶ
legitimate visibility have been exhausted (in which case if K is less than zero, accommodated 
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Figure 1.  Sensor cells with visibility, unsorted by remaining grid 
supply time  

Figure 2.  Sensor cells with visibility, sorted by remaining grid supply 
time 

  

Figure 3.  Attempted (and failed) allocation of all of the current target’s 
demand to sensor cell # 

Figure 4.  Ideal allocation of target demand, spread amongst all cells 
with visibility until the next-adjacent-neighbor has less supply than “K” 



4. Embedded/Implied Tracking Prioritization Scheme 
 
As presented above, note that the first targets accommodated by the sensor supply grid are most likely to be 
successfully tracked since the supply grid is “full” and untapped at the start of the analysis run.  As a result, the 
target deck (e.g. RSO catalog) should best be sorted such that those RSOs of greatest importance to the analyst are 
processed first.  For example, the analyst may wish to track active satellites first and spend remaining supply on 
tracking orbital debris.  Alternately, the analyst may want to try to track the smaller objects and debris first.   
 
In this paper, we sorted our RSO catalog “input target deck” such that the active satellites were addressed first 
(monotonically increasing from smallest to largest size), followed by the non-active RSOs (smallest to largest).  
 

5. Assessing Tracking Needs as a Function of Desired Orbital Accuracy 
 
Ultimately, the goal of any space tracking network is to maintain flawless positional knowledge and awareness of all 
objects in space.  For tiny objects that are too small to track with existing technologies, this goal cannot be reached 
because the network’s sensors are unable to detect and maintain custody of them. 
 
The “Flawless positional knowledge” goal is also unachievable for a host of reasons, many of which are outside the 
sensor network’s direct control (i.e. maneuvering objects, non-cooperative tracking that can introduce cross-tags and 
track misassociations, imperfect atmosphere models, space weather unpredictability, and lack of all-sky persistent 
coverage, and limited sensor tracking resources).   
 
This last issue of sensor tracks being a finite (and typically constrained) resource is an important one, both in the real 
world and in MONET modeling.  For MONET, the user is free to choose any method s/he desires to specify how 
much “demand” (i.e. how many tracks per orbit and how many observations per track) a given target needs to 
maintain desired orbit determination accuracy. 
 
A recent AGI-internal empirical study examined the relationship between resultant orbit solution accuracy and the 
frequency of radar observational tracks (resources) allocated to a given space object in LEO.  The study sought to 
minimize the positional error of tracked satellites while simultaneously minimizing the cost of a tracking system.  
AGI engineers were able to employ AGI’s Components and STK Server technology to run Orbit Determination 
Tool Kit (ODTK) on 384 computational cores to parametrically analyze orbit determination performance on a wide 
variety of site locations, trackers per site, and satellites tracked over time.  These combinations resulted in 
approximately 300,000 total filter runs which were efficiently analyzed as spread over the 384 cores. 
 
For the purposes of the MONET implementation, one of the interesting “heuristics” found from this 
computationally-intensive and extensive study was that for observing sites having reasonable geographical diversity, 
an optimal performance combination of accuracy versus cost was achieved and an average maximum (i.e. around 
the entire orbit arc) post-orbit determination position error of 50 meters was met using a white noise sigma of 20 m, 
10 observations per track and approximately 0.35 tracks per orbit.   
 
For our MONET example test case, we will adopt this admittedly simple heuristic approach to govern how many 
times we will try to track each space object, while recognizing that much more sophisticated relationships and 
heuristics can be accommodated by the MONET digitization paradigm. 
  



  

 
6. MONET Sensor Collection Performance and Rate Modeling 

This “digital” method depends heavily upon the anticipated sensor performance and collection rates at each time 
point along the sensor location grid in inertial space.  Details of our sensor capability and collection rate analytical 
formulations are now shared. 
 
6.1 Ground-Based and Space-Based Optical Sensor Modeling In MONET 
 
The purpose of the optical sensor modeling performance prediction is to be able to quickly and accurately assess the 
capability of a sensor to detect a given target under specific geometric, illumination, and local atmospheric 
conditions. In order to meet the speed requirements, an analytical method was developed and validated against more 
accurate, but also much more time consuming, empirical simulations. This allows for massive simulations and 
architecture trade studies to be performed with modest computing hardware capabilities. 
 
In order to characterize the optical performance of sensors and targets under the conditions of interest, the 
environmental effects analyzed were illumination, relative geometry, and atmosphere. The solar illumination 
included the potential partial or complete shadowing from the earth of the satellite target. The relative geometry was 
characterized as the angle from the sensor to the sun relative to the target (also called the phase angle or the Critical 
Angle from Target to Sun or CATS). Finally, the atmospheric transmission loss from the target to the sensor, as well 
as the ambient path radiance or background illumination at the time of imaging, and the atmospheric distortion of 
the target, were modeled. These environmental effects can be seen graphically displayed below in Figure 5. This 
setup provides accurate entrance aperture radiance for both the target and the background from the perspective of the 
sensor.  

 
Figure 5.  Environmental effects impacting optical performance 

The defined concept of operations or ConOps for MONET is detecting predominantly small targets and thus the 
angular size of the targets will typically be smaller than the resolving power of the optical sensors, and therefore the 
targets can be treated as point sources. This is significant in that the analytical sensitivity equations are greatly 
simplified. For more perspective, the validity of this assumption can be characterized by comparing the angular 
subtense of target to the resolving power of the system. When the angular subtense converted into pixel space is 
much smaller than the System-Q, defined in Equation 6, then a point source approximation is appropriate and this 
analytical method is valid. If this assumption is not true, then a more involved but more accurate empirical 
simulation should be performed. The System-Q is a function of the wavelength of light being evaluated (λ, typically 
the mean sensor response in units of meters), the F/# of the optical sensor system (focal length divided by the clear 
aperture diameter of the sensor), and the detector spacing or pitch (p in units of meters) on the focal plane. The 
equations provided in this section with describe the full empirical modeling method and the analytical 



approximation.   Finally, validation performed through simulation will be presented to assess the accuracy of this 
analytical approach. 
 
Equation 6: ࢋ࢚࢙࢟ࡿ െ ࡽ ൌ

#/ࡲ	ࣅ


 [pixels]   

The model used for calculating the reflected intensity of the target in the direction of the sensor (ITarget, Error! 
Reference source not found.) is a Lambertian gray sphere characterized by an in-band reflectance (ρ, a unitless 
ratio) and a cross-sectional area (ATarget in units of m2). All of the quantities presented here are band–effective, 
spectrally-integrated values as another simplification. The impact of this simplification was found to be minimal for 
the optical sensors, targets, and environments being evaluated.  However, a more accurate spectral representation 
could be used for greater fidelity or for more exotic scenarios that would require high resolution spectral modeling. 
 

Equation 7: ࢚ࢋࢍ࢘ࢇࢀࡵ ൌ
࢚ࢋࢍ࢘ࢇࢀ	ሻ࣐ሺࢋ࢙ࢇࢎࡼ	࣋	ࡲ	࢛ࡿࡱ

࣊
 [W/sr] 

 
The phase function (Phase) of a Lambertian is dependent only upon the phase angle (φ in radians) and characterized 
by Equation 3 which makes it an attractive and simple model. A constant exoatmospheric solar irradiance (ESun in 
units of W/m2) was used to simplify the analysis; however a seasonally varying and geometrically accurate value 
could be used to increase fidelity. Also a general shadowing term (F, a unitless ratio) was derived and applied rather 
than explicitly integrating the penumbra regions influence. 
  

Equation 8: ࢋ࢙ࢇࢎࡼሺ࣐ሻ ൌ
ሻ࣐ି࣊ାሺ࣐࢙ ࣐࢙ࢉ

࣊
 [ratio]   

The atmospheric transmission (τAtmosphere, a unitless ratio) and background illumination or path radiance (LPath in units 
of W/m2 sr) are similarly treated as in-band quantities, and the values were calculated by using a Natural Sky Factor 
(NSF) term that is generally available by date and time over many geographic regions to characterize background 
illumination and also generating representative model atmospheres using MODTRAN 5.1 for specific transmission 
and path radiance values at various target zenith angles. The atmospheric turbulence distortion is modeled as a 
point-spread-function characterized by the optical seeing disc diameter (dSeeingDisc, an angular dimension in units of 
radians). The optical seeing disc is another generally available astronomy parameter that can be estimated for the set 
of representative atmospheres used in this analysis. The target specific entrance aperture radiance (EEntranceAperture) is 
given in Equation 9 and the atmospheric distortion and background illumination will considered later on in this 
section. 
 

Equation 9: ࢋ࢛࢚࢘࢘ࢋࢋࢉࢇ࢚࢘ࡱࡱ ൌ ሻࣂሺࢋ࢘ࢋࢎ࢙࢚࣎
࢚ࢋࢍ࢘ࢇࢀࡵ

࢙࢘ࢋࡿࢀ࢚ࢋࢍ࢘ࢇࢀࢊ
 	[W/m2]   

To this point all of the analysis has been sensor agnostic and this is a natural breakpoint to separate the 
environmental effects from the sensor effects. The next step is to take into consideration the sensor effects including 
the relative target motion, optical projection onto the focal plane, the conversion of focal plane irradiance to a digital 
signal, and finally the digital signal target detection performance. These steps can be visualized as in Figure 6. 

 
Figure 6.  Sensor effects impacting optical performance 



 
For point source targets, the entrance aperture irradiance is projected into focal plane flux (ΦFocalPlane) by the optics 
described in Equation 10, a function of  the effective area of the optics or pupil function (AAperture in units of m2) and 
the effective optical transmission (τOptics as a unitless ratio) including any loss due to imperfect reflection, 
transmission, or obscuration of optical components. This flux is then converted into an analog target signal at a 
specific point (SPoint) by the detectors described in Equation 11, as a function of the integration time (t in units of s), 
the relative spectral response function (SRF as a band effective scaling ratio), quantum efficiency (QE in units of 
electrons/photon), and the energy per photon of the designated wavelength (Qλ in units of joules/photon). These two 
equations, presented below, comprise the total system response of the sensor for the target signal. 
 

Equation 10: ࢋࢇࡼࢇࢉࡲࢶ ൌ    [W]	࢙ࢉ࢚ࡻ࣎	ࢋ࢛࢚࢘࢘ࢋ	ࢋ࢛࢚࢘࢘ࢋࢋࢉࢇ࢚࢘ࡱࡱ

Equation 11: ࢚ࡼࡿ ൌ ࢋࢇࡼࢇࢉࡲࢶ
ࡱࡽ	ࡲࡾࡿ	࢚

ࣅࡽ
	[Electrons]   

At this point we reintroduce the background illumination (LPath) as a radiance that is projected onto the focal plane as 
irradiance and integrated over the detector area to form the background flux (ΦBackground) defined in Equation 12. 
This flux can be converted to electrons just at the target flux was; however, at this point, the dark current (nDarkCurrent) 
and read noise (nRead) should be taken into consideration to get a more complete background signal level (B, 
Equation 13). 

Equation 12: ࢊ࢛࢘ࢍࢉࢇࢶ ൌ 	ሻࡲࡿࡺሺࢎ࢚ࢇࡼࡸ
࣊	࢙ࢉ࢚ࡻ࣎	

ା	ࡲ/#
   [W]		

Equation 13:  ൌ ࢊ࢛࢘ࢍࢉࢇࢶ
ࡱࡽ	ࡲࡾࡿ	࢚

ࣅࡽ
 ࢚࢚ࢋ࢛࢘࢘࢘ࢇࡰ     [Electrons]	ࢊࢇࢋࡾ

All of the signal modeling to this point has been for point sources. However once the signal is recorded even the 
geometrically legitimate point source treatment will undergo spatial modulation due to the atmosphere, relative 
motion, optics, and detectors. These four sources of spatial transformations can be applied to the target point signal 
by modeling the entire system as a linear shift-invariant system. This can be done by treating the target signal as a 
delta function and convolving by the Point Spread Functions (PSF) of the atmosphere, relative motion, optics, and 
detectors. This is shown below in Equation 14, with the following PSF effects: 

 Atmospheric PSF (PSFAtmosphere) characterized by the seeing-disc diameter (dSeeingDisc) 
 Relative motion blur PSF (PSFMotionBlur) is characterized by the smear rate ( νSmear in units of radians/s), 

tracking rate (νTrack in units of radians/s), and integration time (t) previously introduced 
 Optical PSF (PSFOptics) characterized by the diffraction limit which is a function of the wavelength of light 

(λ), F/#, and detector pitch previously introduced as p 
 Detector geometric and sampling PSFs (PSFDetectors and PSFSampling) characterized only by the detector pitch. 

Equation 14:ࢋࢍࢇࡵࡿ ൌ ࢚ࡼࡿ ∗ ൯ࢉ࢙ࡰࢍࢋࢋࡿࢊ൫ࢋ࢘ࢋࢎ࢙࢚ࡲࡿࡼ	 ∗ ,࢘ࢇࢋࡿࣇሺ࢛࢚࢘ࡹࡲࡿࡼ	 ,࢚ ሻࢉࢇ࢘ࢀࣇ ∗	 

,ሺ࢙ࢉ࢚ࡻࡲࡿࡼ  ,#/ࡲ ሻࣅ ∗ ሻሺ࢙࢚࢘ࢉࢋ࢚ࢋࡰࡲࡿࡼ	 ∗   ሻ [Electrons]ሺࢍࢇࡿࡲࡿࡼ	

For the purposes of a simple simulation, the atmospheric and optical PSF can be modeled as 2D symmetric Gaussian 
functions to represent their probabilistic distribution. The motion blur can be modeled as a 1D rectangle or 2D line 
function to represent the linear smearing effect and a 1D Gaussian function to represent to jitter that in this model is 
treated as a function of the tracking rate. Finally, the geometric detector and sampling or phase function PSFs can be 
modeled as 2D symmetric square functions to represent the geometric response of the detector and the uniform 
sampling probability function. An additional note is that the PSFDetectors should be peak normalized to unity to 
characterize the aggregation of signal by the detector, which could then be down-sampled with a comb function to 
produce a specific realization, or convolved with the PSFSampling to get expected values that will be used for this 
analysis. 
 
The 2D convolution is the first step that would require empirical simulation to this point. Although a closed form 
analytical solution may be achievable depending on the 2D PSFs involved for the purposes of rapid analytical 



characterization, an evaluation was performed to compare the peak signal when generated empirically with the peak 
signal calculated analytically.  
To calculate the analytical peak, a number of methods were attempted.  However, best results were found by 
calculating the effective standard deviation of each PSF in two dimensions and RSS’ing each of the dimensional 
components together (Equation 15 and Equation 16). Next, calculating the two separate Gaussian equivalent peaks 
(Equation 17) and multiplying them together (Equation 18) can be completed as shown below to arrive empirically 
at a target signal peak (S) that is approximately equal to the analytical solution (Equation 19) and entirely avoids 2D 
convolution. 
 
Equation 15: ࢊ ൌ ට࢘ࢇࢂ൫ࢋ࢘ࢋࢎ࢙࢚ࡲࡿࡼ൯  ሻ࢛࢚࢘ࡹࡲࡿࡼሺ࢘ࢇࢂ  ൯࢙ࢉ࢚ࡻࡲࡿࡼ൫࢘ࢇࢂ  ሻ࢙࢚࢘ࢉࢋ࢚ࢋࡰࡲࡿࡼሺ࢘ࢇࢂ     [pixels]	൯ࢍࢇࡿࡲࡿࡼ൫࢘ࢇࢂ

Equation 16: ࢊ ൌ ට࢘ࢇࢂ൫ࢋ࢘ࢋࢎ࢙࢚ࡲࡿࡼ൯  ሻ࢛࢚࢘ࡹࡲࡿࡼሺ࢘ࢇࢂ  ൯࢙ࢉ࢚ࡻࡲࡿࡼ൫࢘ࢇࢂ  ሻ࢙࢚࢘ࢉࢋ࢚ࢋࡰࡲࡿࡼሺ࢘ࢇࢂ     [pixels]	൯ࢍࢇࡿࡲࡿࡼ൫࢘ࢇࢂ

This can be slightly simplified if we orient the first dimension along the direction of motion blur, so that the variance 
of the motion blur along the second dimension is zero and the term drops out. Regardless, the peaks in each 
dimension can be calculated as shown in Equation 17 by integrating over a virtual center pixel and combined as in 
Equation 18 to provide a good analytical approximation of the peak of the discrete empirical simulation S in 
Equation 19. 
 

Equation 17: ࢇࢋ ൌ 


࣊√ࢊ
ࢋ
ି

࢞

ࢊ
/

ି/ ൌ



ቂࢌ࢘ࢋ ቀ

.

√ࢊ
ቁ െ ࢌ࢘ࢋ ቀ

ି.

√ࢊ
ቁቃ	[ratio]   

Equation 18: ࢇࢋࡼࡲࡿࡼ ൌ    [ratio]	ࢇࢋ	ࢇࢋ

Equation 19: ࡿ ൌ ൯ࢋࢍࢇࡵࡿ൫࢞ࢇࡹ ൎ    [Electrons]	ࢇࢋࡼࡲࡿࡼ	࢚ࡼࡿ

To verify the accuracy of this analytical approximation, a range of empirical simulations were created to span the 
expected operational ranges (atmospheric PSFs from 0.25 to 2.0 pixels standard deviation in 0.25 pixel increments, 
optical PSFs from 0.25 to 2.0 pixels standard deviation in 0.25 pixel increments, and smear lengths from 0.0 to 20.0 
pixels in length in 0.5 pixel increments), sorted by peak value, and the analytical approximation of the 
corresponding cases were plotted against them for comparison. The results are shown below in Figure 7 with an 
overall RMSE of only 0.0068 for the 2,624 test cases. The analysis performed for this evaluation was done in 
MATLAB, and for this suite of test cases, the time to empirically simulate the test targets 8x oversampled took 256 
seconds total or about 97.7 milliseconds each, compared to analytically calculating the peak, which only took 0.15 
seconds total or about 0.151 seconds total or about 57.6 nanoseconds, a speed increase of over 3 orders-of-
magnitude. The actual implementation used for the MONET simulation was optimized from this in C++ to further 
increase the speed. From visual inspection and the low RMSE of these results, this process was considered excellent 
for this application and justified the use of this approach. 
 
Now, with the full signal chain complete with a spatial PSF peak calculation, a fully analytic approach can be 
applied to both determine the sensor response of a target or conversely to calculate the target parameters given a 
detection criteria. For the MONET application, the two primary optical performance metrics are: 
 

1. Minimum detectable target size 
2. Necessary integration time to detect a target as a function of size 

 
To achieve this first goal, the signal equations can be arranged to calculate the minimum detectable target size given 
a Signal-to-Noise (SNR) constraint. The SNR constraint could be acquired either by known operational detection 
algorithm performance or analytically derived as a probability of detection given either a known threshold or false 
alarm criteria. The SNR threshold can then be converted to a required signal if the background is known and both the 
signal and background can be treated as Poisson distributions, which is a good approximation for this detection 
scenario, and the definition of the SNR can be rewritten as in Equation 20 (where the target signal variance is 
identified as ߪௌ

ଶ  and the background signal variance is identified as ߪ௨ௗ
ଶ ). From there the definition can 

be rearranged to solve for S in terms of SNR and background shown in Equation 21. 



 

 
Figure 7.  Plot of empirically simulated vs analytically calculated peak across operational range of parameters 

 
 

Equation 20: ܀ۼ܁ ൌ
ࡿ

ටࢇࢍࡿ࣌
 ାࢊ࢛࢘ࢍࢉࢇ࣌


ൌ

ࡿ

ାࡿ√
  [ratio]   

Equation 21: ࡿ ൌ
۰ࡾࡺࡿାࡾࡺࡿାඥࡾࡺࡿ


	 [Electrons]   

Because target smear is a very large contributor to the target signal degradation, an alternative formulation of this 
can be done where a more advanced target detection algorithm is performed. A simple and linearly optimal detection 
method when a moderate amount of smear is present is using a matched filter, where if we create a linear matched 
filter to match the smear length of the target distribution then we can consider the n-samples where n is the number 
of smeared target pixels (equal to the smear rate in pixels per second multiplied by the integration time in seconds). 
This could give us a new matched filter SNR (SNRMF) that is described in Equation 22, and again converted into an 
equivalent single-pixel or peak signal in Equation 23. 
 

Equation 22: ࡲࡹࡾࡺࡿ ൌ
ࡿ

ටࢇࢍࡿ࣌
 ାࢊ࢛࢘ࢍࢉࢇ࣌


	 [ratio]   

Equation 23: ࡿ ൌ
ࡲࡹࡾࡺࡿ

 ାටࡲࡹࡾࡺࡿ
 ାࡲࡹࡾࡺࡿ

 ۰


	 [ratio]   

This matched-filter approach is more reasonable given operational detection algorithms and for low target smear this 
will reduce to the previous definition in Equation 21. To address the first optical performance metric, we can solve 
for S from the given matched filter SNR threshold and smear rate, then put this in terms of the signal equations as in 
Equation 24 and then rearrange to solve for target size that will produce this signal value in Equation 25. 
 

Equation 24:ࢇࢋࡼࡿ ൎ ሻࣂሺࢋ࢘ࢋࢎ࢙࢚࣎
࢚ࢋࢍ࢘ࢇࢀ	ሻ࣐ሺࢋ࢙ࢇࢎࡼ	࣋	ࡿ	࢛ࡿࡱ

࢙࢘ࢋࡿࢀ࢚ࢋࢍ࢘ࢇࢀࢊ	࣊
 ࢙ࢉ࢚ࡻ࣎	ࢋ࢛࢚࢘࢘ࢋ	

ࡱࡽ	ࡲࡾࡿ	࢚

ࣅࡽ
  [Electrons]	ࢇࢋࡼࡲࡿࡼ	

Equation 25: ࢚ࢋࢍ࢘ࢇࢀ ൎ
࢙࢘ࢋࡿࢀ࢚ࢋࢍ࢘ࢇࢀࢊ	࣊	ࢇࢋࡼࡿ

 ࣅࡽ	

ࢇࢋࡼࡲࡿࡼ	ࡱࡽ	ࡲࡾࡿ	࢚	࢙ࢉ࢚ࡻ࣎	ࢋ࢛࢚࢘࢘ࢋሻ࣐ሺࢋ࢙ࢇࢎࡼ	࣋	ࡲ	࢛ࡿࡱ	ሻࣂሺࢋ࢘ࢋࢎ࢙࢚࣎
	 [m2]   

A final step is to now represent this not as a signal value, but as a single pixel target signal rate (s) and single pixel 
background rate (b) that increase linearly with time. We can rearrange Equation 22 to replace n with νSmear t, S with 
s/ νSmear (because the single pixel target signal is inversely proportional to the smear rate), and B with bt. This gives 



us Equation 26, which can then be rearranged to solve for integration time shown in Equation 27, addressing the 
second primary optical performance metric. 
 

Equation 26: ܀ۼ܁ ൌ
࢘ࢇࢋࡿࣇ/࢙࢚࢘ࢇࢋࡿࣇ
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࢙࢚
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Equation 27: ࢚ ൌ
ࡾࡺࡿ࢙

܀ۼ܁࢈࢘ࢇࢋࡿࣇି࢙
	[s]  

 
6.2 Probability of Cloud Cover Modeling for Optical Sensors 
 
Following the development of BSPACE weather modeling, we combine weather characterization accuracy α 
(incorporating both real-time assessment/status and forecasting, where 1 = perfect characterization) with Probability 
of Cloud Cover (Pcc=0 for perfectly clear hemisphere above a ground observing sensor) to assess the probability of 
attempting to collect the target (Plook) and the probability of actually seeing the target as follows (note that the 
inverse of Psee represents the statistical increase in optical collection resources needed to compensate for the effects 
of weather: 
 
Equation 28: ࡼ ൌ ሺࢻሻሺ െ ሻࢉࢉࡼ  ሺ െ   ሻࢉࢉࡼሻሺࢻ

Equation 29: ࢋࢋ࢙ࡼ ൌ ሺࢻሻ
ሺିࢉࢉࡼሻ

ࡼ
  

One could also incorporate the concept of weather persistence Wp over a target collection frequency F and we 
define maximum ground sensor satisfaction as shown in Equation 30, although for this paper we just chose to use 
 and weather persistence ࢋࢋ࢙ࡼ to scale the cloud-free collection rate for a given sensor, and we ignored (above) ࡼ
under the assumption that cloud sensors onsite at the optical telescopes would be well-characterized and telescope 
housings would be responsive enough to make a lack of weather persistence a non-issue. 

Equation 30: ࢚ࢉࢇࢌ࢙࢚ࢇࡿ_࢙࢘ࢋࡿ ൌ  െ ࢉࢉࡼ
ࡲ
ൗࢃ

  

Probability of Cloud Cover (Pcc) and precipitation rate were evaluated over the years 2000 to 2014 by extensive 
statistical characterization of the global Reanalysis-2 data2 as shown in Figure 8 and Figure 9.  The median Pcc 
statistics are directly ingested into MONET as a function of month of year and global location, whereas the median 
annual precipitation rates could be incorporated into a radar or RF energy loss expression if so desired (but are not 
utilized by MONET at this time).  
 

  

Figure 8.  Median monthly nighttime percent cloud cover 
aggregated over years 2000 to 2014 (western hemisphere). 

Figure 9.  Median monthly nighttime percent cloud 
cover aggregated over years 2000 to 2014 (EH). 



6.3 Ground-Based Radar Sensor Modeling In MONET 
 
For the purposes of initial radar sensor modeling in MONET, we consider the use of pulsed radars for the detection 
of LEO objects.   The two classes of radars considered are the Advanced Modular Incoherent Scatter Radar 
(AMISR) UHF phased array systems and dish-based radars.  These are described in more detail below. 
 

Radar	Equation	
The detection capability of a radar results from a combination of (a) the system parameters such as frequency / 
wavelength, transmit and receive gain, transmit power, system losses and system temperature (including noise 
figure), (b) target parameters such as range and cross-section, and (c) the integration time of the measurement.  Our 
analysis begins with the radar equation, where the received power for a coherent point-like target (with physical 
dimensions much smaller than the illuminated volume) is given by, 
 

Equation 31: ࢞࢘ࡼ ൌ
ࣅ࣌࢞࢘ࡳ࢚࢞ࡳ࢚࢞ࡼ

ሺ࣊ሻ࢞࢘ࡾ
࢚࢞ࡾ

ࡸ
 (symbols defined in Table 1)  

Table 1 Symbols, definitions, and units. 

 
 

The noise power is related to the system temperature and receive bandwidth, 
 

Equation 32: ࡼ ൌ   ࢙࢙࢟ࢀࣄ

where Tsys includes sky and system noise, with the dominant contributions to the latter being due to the noise figure 
of the low-noise amplifier at the antenna. The signal-to-noise ratio is then defined simply as, 

Equation 33: ࡾࡺࡿ ൌ ࢞࢘ࡼ
ࡼ

  

Integration	
Coherent integration can be used to boost target detectability.  The amount of coherent detection possible is limited 
by the coherence of the target and the coherence of the radar, with the former being the main limitation for the levels 
of integration time considered here and using fully coherent radar systems.   Coherence requires amplitude 
stationarity (or accurate modeling of the amplitude coherence), and this is likely the main integration time limitation.  
Change in position within the radar beam must be accounted for in coherent detection. 
 
Assuming a receive bandwidth matched to the transmit bandwidth, the increase in SNR from coherent integration 
over a time Tint is given by 

Equation 34: ࡲ	࢚ࢀ	  



where F is the duty factor of the system.  Turning the above equations around, we solve for the required integration 
time given a desired SNR level, 

Equation 35: ࢚ࢀ ൌ ࡾࡺࡿ
࢙࢙࢟ࢀࣄ
࢞࢘ࡼࡲ

  

Using the above equations for a fixed integration time and desired SNR level, we can solve for a minimum 
detectable cross-section. 
 

Cross‐section	Model	
For MONET, we require a model of radar-scattering cross-section to relate object size to object detectability. We 
utilize a simple approach of assuming metallic conducting spheres with diameter d=2r.  Our simple radar cross-
section consists of three regimes - the optical, Rayleigh, and Mie scattering regions - where the cross-sections are 
given by, 

Equation 36: ࢇࢉ࢚࣌ ൌ   ࢘࣊

Equation 37: ࢎࢍࢋ࢟ࢇ࢘࣌ ൌ ࢇࢉ࢚࣌


ૢ
ሺ࢘ࣄሻ  

Equation 38: ࢋ࣌ ൌ ࢇࢉ࢚࣌ ቀ േ ඥ. ሺ࢘ࣄሻି ⁄ ቁ

, ࢘ࣄ    

Note that we do not attempt to model the detailed interference pattern in the Mie region, but the Mie cross-section 
defines the expected maximum and minimum cross section.  For the region between the end of the Rayleigh regime 
and the start of the Mie region, we interpolate. 
 
The cross-section normalized to the optical cross-section as a function of normalized radius (kr) is shown in Figure 
10.  The cross-section drops as wavelength to the fourth power in the Rayleigh regime for fixed object radius.  In the 
Mie regime, constructive and destructive may lead to enhanced or diminished scattering.  In the optical regime, the 
object cross-sectional size determines the scattering cross-section. 

 
Figure 10.  Normalized cross-section as a function of normalized radius for a metallic sphere. 

This model can be used to move between radar scattering cross-section and object radius. For example, in Figure 11, 
we plot the cross-section as a function of object radius for three different probing wavelengths corresponding to a 3 
GHz radar, a 1.290 GHz radar, and a 450 MHz radar.  For detection of objects of a given size, a radar wavelength 
should be above the Rayleigh transition break point, i.e. 



Equation 39: ࣅ ∽ ቀ


ૢ
ቁ
/

	࢘࣊  

At 450 MHz, 1.290 GHz, and 3 GHz, these transitions occur at radii of approximately 6.5 cm, 2.2 cm, and 1 cm, 
respectively. 
 

 
Figure 11.  Cross-section in dBsm as a function of object radius for three different probing wavelengths. 

	
 	



Sensors	
For the purposes of the initial MONET implementation, we consider the use of two classes of radar sensors: large 
phased array radar sensors and steerable dish-based radars.  The technical specifications for these systems are listed 
in Table 2. 

Table 2 AMISR and Sondrestrom technical specifications. 

 
 

AMISR	Phased	Array	Radars	
The Advanced Modular Incoherent Scatter Radar (AMISR) class of radar systems are modular, mobile radar 
facilities.  The radars' main purposes are to perform studies of the upper atmosphere and ionosphere and to observe 
space weather events.  SRI International, under a grant from the National Science Foundation (NSF), led the 
collaborative effort in the development of AMISR, whose novel modular configuration was designed to allow 
relative ease of relocation for studying upper atmospheric activity around the globe. Remote operation and 
electronic beam steering allow researchers operate and position the radar beam instantaneously to accurately 
measure rapidly changing space weather events. 
 

 
 

Figure 12.  PFISR (left) and RISR-N (right) systems. 

AMISR now consists of three separate radar faces, with each face comprised of 128 building block-like panels over 
a ~32 by 28 meter surface. The first AMISR face was deployed in Poker Flat, Alaska in 2006 (the Poker Flat ISR, or 
PFISR), and the remaining two faces have been deployed in Resolute Bay, Nunavut, Canada (RISR-N and RISR-C),  
Figure 12.  Future NSF AMISR deployments will be determined by a scientific advisory panel assembled at the 
behest of NSF.  
 
An AMISR satellite and debris tracking capability has been developed, and these systems are now used routinely to 
track satellites.  The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as 
small as 5-10 cm in size. Current satellite tracking at AMISR achieves a range resolution better than 20 meters. 
 



Figure 13 shows range residuals using nearly 60,000 data points from hundreds of satellite passes over PFISR. 
Range residuals are approximately normally distributed over +/- 20 meters. Range biases have been shown to be 
stable with a standard deviation of less than 10 meters.  The Doppler residuals are currently at the level of 75 cm/sec 
with coherent integration of 60 milliseconds. 
 

 
Figure 13.  Range residuals using nearly 60,000 data points from satellite tracking with PFISR. 

AMISR provides the measurement quality necessary for to create high-fidelity orbital solutions. This is 
demonstrated in Figure 14. PFISR tracked the LARETS satellite, whose position is precisely known from satellite 
laser ranging. The satellite is located in a polar orbit with an altitude of 685 km. Orbital solutions were computed 
with AGI’s Orbit Determination Tool Kit (ODTK) from 15 passes of PFISR measurements, and compared against 
orbits fit to satellite laser ranging data. Figure 14 (top) shows that the measurement residuals are typically much less 
than 30 meters. Figure 14 (bottom) shows that the in-track difference between the two orbits is less than 30 meters 
and averages around 10 meters. Cross-track and range differences are even smaller. The in-track differences show 
one oscillation per orbit. The PFISR orbit was created with data from only one sensor, so this oscillation is an effect 
of under-sampling the orbit. However, PFISR takes enough measurements during each pass, and with a large 
angular separation, that the under-sampling oscillations are limited to less than 20 meters (peak to peak) over the 
entire orbit.  
 

Sondrestrom	Dish	Radar	
Just north of the Arctic Circle and 100 km inland from the west coast of Greenland, the Sondrestrom Upper 
Atmospheric Research Facility in Kangerlussuaq, Greenland is a research facility dedicated to studying the polar 
upper atmosphere.   The facility is operated by SRI International in Menlo Park, California, under the auspices of the 
NSF. The facility has been operating in Greenland since 1983. 
 
This facility is host to more than 20 instruments, the majority of which provide unique and complementary 
information about the arctic upper atmosphere. Together, these instruments advance our knowledge of upper 
atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma 
environment. The suite of instrumentation supports many disciplines of research, from plate tectonics to auroral 
physics and space weather. The facility instrumentation covers the electromagnetic spectrum while the data results 
span the spectrum of polar research. 
 
The centerpiece instrument of the facility is an L-band incoherent scatter radar with a 32 meter fully steerable 
antenna. The IS radar technique is a powerful tool capable of measuring range-resolved ionospheric and atmospheric 
parameters simultaneously from the ground to the outer reaches of our atmosphere. Use of a steerable antenna 
allows spatial coverage in both latitude and longitude.  See radar specifications in Table 2. 
 
 



 
 

 
 
Figure 14.   (Top) Computed orbital solution residuals from PFISR measurements of 15 passes of the LARETS laser ranging 

satellite. (Bottom) In-track difference between orbits fit to PFISR data and vs. laser ranging data (y-axes units are meters). 

Tracker IDs: SRI.PFISR
Satellite IDs: LARETS_27944
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Example:	PFISR	
 
Using the equations developed earlier in this section, we now explore the sensitivity of the PFISR system.  Figure 15 
shows the minimal detectable object size in dBsm as a function of range given an integration time of 100 
milliseconds, a desired SNR of 10 dB, a system temperature of 300 K, and the maximum transmit power and radar 
duty cycle.   At 1000 km, the radar can detect objects as small as ~ -40 dBsm.  The lower panel of Figure 3.6 shows 
the corresponding object size using the cross-section model developed earlier.  The spread of object sizes is a result 
of Mie scattering.  For example, at a range of 1000 km it is predicted that the minimum detectable object size is in 
the range 5-20 cm.  In turn, Figure 16 shows the required integration time to detect an object with a certain cross-
section.   
 

Figure 15.  (Top) Minimum detectable cross-section and (bottom) 
corresponding object size range for PFISR. 

Figure 16.  Minimum coherent integration time as a function of range 
for PFISR for three different scattering cross-sections. 

 
A way to validate the methods described in this paper is to use objects of known size and estimate their cross-section 
from many measurements.   We have done this analysis with PFISR for 4 spherical objects: Stella (24 cm), LARES 
(37.6 cm), LARETS (21 cm), and POPACS (10 cm).  Each analysis consists of hundreds of passes, and the objects 
span different orbital altitudes in LEO.   The histograms for each target are displayed graphically in Figure 17 and 
the median and mean values as compared to the predicted cross-sections are shown in Table 3.  Measurements for 



all four targets fall within the predicted cross-section range. The objects span a predicted cross-section range of 
approximately 10-20 dB.  Stella and LARETS are of similar size and the measured cross-sections are similar in 
magnitude.  However, these targets are in the Mie regime where there is uncertainty about the expected cross-
section.  LARES, on the other hand, is a larger object, and its returns are comparatively larger.  POPACS, the 
smallest objects analyzed, lie in the Rayleigh regime.  The measured cross sections are within 2 dB of the predicted 
cross sections.  Hence, we conclude that for the specific case when the target is actually a metallic sphere, consistent 
with our assumptions, the analysis leads to reasonable estimates of cross-section.  
 

Table 3 Comparison of predicted and measured cross-sections for four targets. 

Object Predicted Cross 
Section 

Measured Median 
Cross Section 

Measured Mean 
Cross Section 

LARES (37.6 cm) -16 to -6 dBsm -15.4 dBsm -14.1 dBsm 
Stella (24 cm) -31.5 to -8.0 dBsm -23.2 dBsm -21.36 dBsm 
LARETS (21 cm) -32.6 to -8.5 dBsm -26.8 dBsm -24.6 dBsm 
POPACS (10 cm) -25.6 dBsm -26.5 dBsm -24.0 dBsm 

 

 
Figure 17.  Cross-section histograms from hundreds of passes for (Top Left) Stella 24-cm sphere, (Top Right) Lares 
37.6-cm sphere, (Bottom Left) LARETS 21-cm sphere, and (Bottom Right) POPACS 10-cm spheres.  Black and red 
dashed lines show median and mean values of the distributions, respectively. 
  



7. MOTIVATION: AGI’S NEW COMMERCIAL SPACE OPERATIONS CENTER (COMSPOC) 
 
MONET was initially conceived to perform low-to-medium-fidelity system trades in the system concept 
development stage for Analytical Graphics Inc. (AGI’s) new Commercial Space Operations Center3 (ComSpOC) 
initiative.  ComSpOC pairs up AGI’s powerful SSA Software Suite with existing underutilized sensors, plus 
anticipated new sensors, to yield exquisite observation, association and tracking of Resident Space Objects (RSOs). 
ComSpOC’s combination of cost-effective yet extremely capable optical, radar, passive RF sensors (Figure 18) 
provides a broad-spectrum, commercial alternative to achieving Space Situational Awareness. 
 
One of AGI’s goals for ComSpOC is to significantly increase the number of space objects being tracked.  As 
depicted in Figure 19, the number of objects currently being tracked (left side, blue “bubbles” denote number of 
objects being tracked in the public catalog) is only three percent of the number of objects projected to be in space 
down to one centimeter in size (red bubbles on right). 
 
 

Figure 18.  Anticipated ComSpOC optical, passive RF and radar sensor sites. Figure 19.  Comparison of RSOs 
tracked in public catalog vs. estimated 
RSOs larger than 1 cm, by altitude. 

 



8. MONET RESULTS AND CONCLUSIONS 
 
To illustrate how MONET works, we will examine a purely hypothetical, but entirely achievable, notional sensor 
network comprised of optical and radar sensors attempting to track 150,000 space objects of sizes that are roughly in 
family with today’s RSO catalog RCS values.  
 
8.1 Sample Test Case 
 
First, the observing network and the space population it is attempting to track must be defined.   
 
The purely notional observing network architecture selected for illustrative purposes of this paper is summarized in 
Table 4.   
 
Note that while we have not yet discussed passive RF sensors and are not including them in the example, such 
sensors could also be readily implemented in MONET, with passive RF rates of collection determined from average 
slew rates and dwell time and their ability to detect actively-transmitting (or reflecting) satellites based upon EIRP 
contours and antenna patterns. 
 

Table 4 MONET Example optical (blue-hued) and radar (orange-hued) sensor laydown. 

Sensor 
# 

Sensor Description Sensor 
Location 

Sensors 
Avail 

Apportionment 
per day (ea.) 

1 0.4 m Optical Telescope Australia, Eastern 1 1.0 
2 1.0 m Optical Telescope Australia, Eastern 1 0.2 
3 2.0 m Optical Telescope Australia, Eastern 1 0.05 
4 0.4 m Optical Telescope Chile 2 2.0 
5 1.0 m Optical Telescope Chile 1 0.2 
6 0.5 m Optical Telescope Italy 1 1.0 
7 0.35 m Optical Telescope Japan 1 1.0 
8 0.2 m Optical Telescope (Kelso) Maui 1 1.0 
9 0.4 m Optical Telescope Maui 1 1.0 

10 2.0 m Optical Telescope Maui 1 0.05 
11 0.4 m Optical Telescope South Africa 2 1.0 
12 1.0 m Optical Telescope South Africa 1 0.2 
13 0.4 m Optical Telescope Tenerife 1 1.0 
14 PFISR Alaska 1 0.5 
15 RISR Canada 1 0.5 
16 Notional AMISR for smaller targets Hawaii 1 1.0 
17 Notional AMISR for smaller targets California 1 1.0 
18 Notional AMISR for smaller targets Guam 1 1.0 
19 Notional AMISR for smaller targets Puerto Rico 1 1.0 
20 Notional AMISR for smaller targets Greenland 1 1.0 

 
The optical and radar sensor coverage volumes associated with the above sensor laydown are shown in Figure 20 
and Figure 21.  The colors assigned to the volumetrics denote the smallest objects trackable at that viewing 
geometry and conditions.  In Figure 20, magenta represents 1m objects and green represents 5m objects.  In Figure 
21, red thru yellow denotes 1 to 25 cm respectively and green thru blue denotes 1m objects respectively. 
 
To model the space population (demand), SATCAT RCS values were adopted for radar cross-section as well as 
optical-facing surface area, with default values used whenever RCS values were unavailable4.   Next, a public RSO 
catalog dated 29 June 2014 and consisting of 14923 RSOs was used.  Note that in MONET, it is easy to utilize such 
a catalog to represent the tracking requirements associated with an inflated catalog (e.g. to represent 10 satellites by 
randomly drawing 10 in-track positions). Such an inflated space population is the set of requirements that we desire 
a space tracking network to be able to accommodate; a three-dimensional spatial density of the non-inflated public 
RSO catalog is portrayed in Figure 22 (LEO) and Figure 23 (GEO). 



 
 
 

 

Figure 20.  Optical sensor coverage volumes constrained up to 10,000 
km altitude, color-coded by minimum-trackable object size w/magenta 
1 m and green 5 m 

Figure 21.  Radar sensor coverage volumes constrained up to 10,000 
km altitude, color-coded by minimum-trackable object size with red 1 
to 10 cm and green/blue up to 1 m. 

 

Figure 22.  Spatial density of the LEO regime up to 1000 km. Figure 23.  Spatial density of the GEO regime ± 2000 km. 

  



8.2 MONET Results for the Sample Test Case 
 
MONET analyzed the above test case.  MONET can provide wealth of sensor metrics and approaches to portray the 
performance of the system-of-systems sensor network, to include probability density function (PDF) 
characterizations, performance by sensor and sensor type, percent satisfaction by space object, crude estimates of 
orbit determination resultant accuracy (when a suitable OD heuristic is incorporated).  Summary results for the 
optical sensors in our notional example test case are provided in Figure 24 and Figure 25.  Results for the radars of 
the sample test case are shown in Figure 26 and Figure 27. 
 

 
Figure 24.  Total radar tracking time spent by each sensor within each 5-minute tracking slice 

 
Figure 25.  Total radar tracks accomplished by each sensor within each 5-minute tracking slice 



 
 

 
Figure 26.  Total optical tracking time spent by each sensor within each 5-minute tracking slice 

 
Figure 27.  Total optical tracks accomplished by each sensor within each 5-minute tracking slice 

 
Figure 24 and Figure 25 show the lighting-driven cyclical nature of optical sensor supply time loading.  For GEO 
objects, the optical sensors with large coverage volumes of RSOs with slow angular rates perform the bulk of 
tracking, whereas in LEO objects, the radar’s all-weather tracking coupled with extremely high track rates make it 
the dominant contributor. 
  



 
9. Conclusions 

 
The utility and capabilities of the Multi-phenomenology Observations Network Evaluation Tool (MONET) have 
been presented.  This approach uses digitization coupled with medium-fidelity optics and radar models give 
credence to the methodology. 
 

10. Future Work 
 
There are many topics for future work associated with MONET: 

 As coded, MONET runs 20 sensors against the full catalog for one month in several hours on an i7 simple 
laptop.  While not too bad, we have already identified and are implementing ways to speed up processing 
further.   

 MONET is also well-suited for a parent GA calling function.   
 As sensor tracking rates are sometimes limited by network bandwidth to/from the site, we may explore a 

second digitized supply to model the network and buffer queues and bandwidth. 
 IR and laser illumination are a top priority on the sensor modeling side.   
 Conceiving and implementing of sensor cost-vs-performance metrics 
 Creation and analysis of large-scope pace population catalogs based on best-of-breed space population 

models, including 150,000 (down to 2 cm) and 720,000 (down to 1 cm) catalogs 
 Model passive RF sensor networks 
 Develop and implement improved resultant OD heuristics and accuracy analyses 
 Create additional MONET results metrics and graphs 
 Run MONET to assess percent satisfaction of tracking RSOs, and then create spatial density plots of the 

objects with unsatisfactory performance (e.g. < 50% each day). 
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