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EFFICIENT COVARIANCE INTERPOLATION USING BLENDING 
OF APPROXIMATE STATE ERROR TRANSITIONS 

Sergei Tanygin*  

Efficient storage and quick access to covariance data are important aspects of 
orbit catalog maintenance and conjunction analysis (CA). The catalog and CA 
access and storage requirements cannot accommodate running a complete esti-
mation process whenever orbit state and covariance are requested at some time. 
Instead, ephemeris and reduced covariance data are recorded at discrete times. 
Covariance interpolation from tabulated data must preserve positive definiteness 
and evolve covariance similar to the estimation process. This paper describes a 
new covariance interpolation method which blends approximate state error tran-
sitions anchored at end points of interpolation interval to produce accurate phys-
ically meaningful covariance. 

INTRODUCTION 

Efficient storage of and quick access to covariance data are important aspects of orbit catalog 
maintenance and conjunction analysis (CA).1 Covariance generation is part of an estimation pro-
cess that may include different state variables, dynamical models, measurement models, and es-
timation algorithms. The estimation process is typically computationally expensive and requires 
significant storage for covariance data for large estimation states. The catalog and CA access and 
storage requirements are generally too stringent to accommodate running of full estimation pro-
cesses whenever orbit state and covariance are requested for some moment in time. Instead, 
ephemeris and reduced covariance data are tabulated and stored at certain times. There are many 
established techniques for computing an orbit state given tabulated ephemeris; they lie outside of 
the scope of this paper which focuses on computing covariance from tabulated data. This task 
faces unique challenges because, unlike elements of Cartesian position and velocity, covariance 
elements cannot be interpolated independently. They must be interpolated in a way that at the 
very least preserves the positive definiteness of covariance matrix. Moreover, it is desirable to 
generate interpolated covariance in a way that follows closely a physically meaningful evolution 
that would have been generated by the underlying estimation process.  

Covariance interpolation solution methods can be broadly separated into two categories: those 
that use state error transition and those that do not. In general, complete state error transition and 
process noise employed by the estimation process are not available during interpolation, so only 
approximate state error transitions can be used. Alfano2 proposed using quintic splines to fit be-
tween two tabulated covariances with their first and second derivatives approximated using some 
representative force model, e.g. a simple two-body model. It can be argued that through the use of 
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the representative force model some approximation of the orbit state error transition is indirectly 
introduced into the computation. However, in the end the quintic spline interpolation technique is 
not constrained to adhere to the realistic evolution of covariance. For example, it fundamentally 
does not guarantee positive definiteness of interpolated covariance. Woodburn and Tanygin3 pro-
posed a different method specifically for interpolating of position-only tabulated covariance. This 
method does not incorporate state error transition information but relies on the eigen-
decomposition of a 3x3 covariance matrix to separately interpolate covariance sigma values and 
orthogonal eigenvector (rotation) matrices. The interpolated position covariance is reassembled 
from the interpolated sigma values and rotation matrix with the added benefit of guaranteeing 
positive definiteness. This method is restricted to state representations where position can be sep-
arated. 

This paper describes a new method for interpolating covariance in which an approximate state 
error transition is incorporated directly into the computation. This method guarantees positive 
definiteness of the interpolated covariance and can be applied either to the original form of the 
covariance matrix or to one of its several possible factorizations. In all cases, incorporating ap-
proximate state error transitions brings evolution of the interpolated covariance closer to what 
would have been generated by the estimation process.  

PROBLEM STATEMENT 

Let two covariances iP  and 1iP  corresponding to states ix  and 1ix  and computed at times it  

and 1it   be related via a time update of the nonlinear estimation process4  

 T
1 1 1 1( ) ( )i i i i i i it t    P Φ PΦ Q , 0,1,...i  (1)

Here ( ) ( ) /i it t Φ x x  denotes the state error transition matrix evaluated along the state trajec-

tory ( )tx  and anchored at time it , i.e. ( )i it Φ I ; also, 1iQ  denotes the process noise term ac-

cumulated from time it  to 1it  . In theory, the covariance ( )tP  for any time  1,i it t t   can be 

evaluated using this formula provided that the state error transition matrix and the process noise 
term can be computed for that time. In practice, using tabulated covariances to restart the full es-
timation process and perform a large number of covariance evaluations at intermediate times can 
be too slow and require too much memory. The computational cost arises from employing accu-
rate but computationally expensive dynamical models and the memory cost arises from using 
states and covariances that may include auxiliary modeling parameters required by the estimation 
process but generally not needed for the intended analysis, e.g. force modeling parameters not 
needed for conjunction analysis. 

The goal of this paper is to provide an efficient alternative for computing the relevant parts of 
( )tP  based on ( )tx  and tabulated iP , 1iP .  

SOLUTION OUTLINE 

Throughout the rest of the paper it should be understood that, different from the previous sec-
tion, iP , 1iP  and ( )tP  from now on refer only to those parts of the full covariances employed by 

the estimation process (Eq. (1)) that are being tabulated and interpolated; that no knowledge of 
the process noise is assumed; and that from this point on the state error transition matrices ( )i tΦ  

are approximate and based only on the information derivable from ( )tx , the tabulated part of the 
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state, and possibly some limited additional information needed for the simplified dynamical mod-
el.  

Let ( ) ( )i tP  denote the state error covariance matrix created without the process noise by using 

the approximate ( )i tΦ  to propagate iP  from it  to t . Then, in this notation,* T
( )i i i iP Φ PΦ .  

For the same time  1,i it t t  , an alternative version of the covariance matrix can be created by 

propagating 1iP  from 1it   back to t  using 1( )i tΦ  anchored at 1it  : T
( 1) 1 1 1i i i i   P Φ P Φ . 

Since these formulations lack the process noise terms and use only approximate (and potentially 
reduced order) ( )i tΦ  and 1( )i tΦ , they in general do not match how tabulated iP  and 1iP  have 

been originally related to each other by the estimation process. Hence, although computed for the 
same time t , in general, ( ) ( 1)i i P P P . 

it 1it 

1iP

iP

( ) 1( )i it P

( 1) ( )i itP

Forward Approximation

Backward Approximation
Blending

( ) ( )i tP

 

Figure 1. Smooth Interpolation using Blending of Forward and Backward Approximations. 

In other words, the approximate transition that ( )i tΦ  imposes iP  moving forward in time 

does not match the transition that 1( )i tΦ  imposes on 1iP  moving backward in time, and neither 

matches the “true” covariance ( )tP  that would have been obtained by the estimation process. 

These alternative approximations cover the same interval  1,i it t t  . The forward approxima-

tion, clearly accurate at time it , should remain more accurate than the backward approximation 

near it . On the other hand, the backward approximation, clearly accurate at time 1it  , should re-

main more accurate than the forward approximation near 1it  . Hence, a reasonable combined ap-
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proximation should follow mostly ( )iP  governed by ( )i tΦ  at the beginning of the interpolation 

interval and then progressively favor the other until it follows mostly ( 1)iP  governed by 1( )i tΦ  

at the end of that interval (Fig. 1).  

This type of approach called blending represents a very general concept. Any trajectories, mo-
tions or properties can be blended using specially designed scalar functions ( )  , where   is the 

fractional portion of the interpolation interval:      1/ 0,1i i it t t t    . 

BLENDING VS. STANDARD INTERPOLATION 

Let the covariance obtained by applying the blending function   to the forward and back-

ward approximations, ( )iP  and ( 1)iP , be formally written as  ( ) ( ) ( 1)blending ,i i i


P P P . 

In this notation a standard interpolation can be written as  
0 1

1
,

interpolation ,i i i
 

P P P  where 

0 , 1  are the interpolation basis functions. In order to possess the interpolation property of 

passing through the tabulated nodes iP , 1iP  the blending function must satisfy 

 (0) 0  , (1) 1  (2)

and the interpolation basis functions must satisfy* 

 0 (0) 1  , 0 (1) 0   and 1(0) 0  , 1(1) 1  (3)

For a smooth blending, the blending function must also satisfy  

 (0) (1) 0    (4)

where    denotes differentiation with respect to  . For a smooth interpolation, a new formula-

tion must be used  
0 1 0 1

1 1
, , , ,

smooth interpolation , , ,i i i i i
   

 P P P P P   where the two additional basis 

functions 0 , 1  operate on the time derivatives iP , 1iP  which are provided at times it  and 

1it  , respectively, in addition to iP , 1iP . Additional conditions in this case include† 

 (0) (1) (0) (1) 0k k k k         for  0,1k  (5)

and 

 0 (0) 1  , 0 (1) 0   and 1(0) 0  , 1(1) 1  (6)

                                                      

* In many cases, the basis functions are such that 0 11    and the blending function   can be identical to 1 . 
† Higher order derivatives can be considered for even smoother interpolations in which case additional basis functions 
are used and additional conditions are imposed at the ends of interpolation interval. 
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Note the apparent similarities in a way that the blending function   and the interpolation basis 

functions 0 , 1  effectively weigh the relative contributions from the two constituents while 

satisfying certain boundary conditions. However, a very important distinction between the ap-
proaches lies in the nature of the constituents being blended vs. interpolated. Blending occurs be-
tween values propagated to the same time from two tabulated times. Interpolation occurs solely 
based on fitting of the basis functions between tabulated times. Thus, while interpolation may 
incorporate higher order derivatives at the tabulated times, it cannot accommodate any infor-
mation about possible transition between these times and relies instead on non-physical mathe-
matical fitting techniques to produce interpolated time histories. The main advantage of the pro-
posed blending approach lies in the ease with which it can incorporate approximate yet physically 
meaningful transitions. 

Blending Functions 

There are many types of blending functions but polynomial functions are of particular interest 
because of their simplicity. Some of them are listed in Table 1. 

Table 1. Polynomial Blending Functions. 

Order Expression ( )   

Linear ( )    

Quadratic 
 

 
2

2

2 , 0,0.5
( )

4 2 1, 0.5,1

 
 

  
     

 

Cubic 2 3( ) 3 2      

Quintic 3 4 5( ) 10 15 6        

 

Here all functions except linear also satisfy the boundary conditions for smooth blending.  

BLENDING OF SYMMETRIC POSITIVE DEFINITE MATRICES 

The simplest application of blending to symmetric positive definite matrices is called arithme-
tic because it is related to a concept of arithmetic mean.  

Arithmetic Blending* 

The arithmetic blending is derived in the Euclidean space where the distance metric between 
two real square matrices is defined as the Frobenius norm of their difference:5 

( ) ( 1) ( ) ( 1)( , )A i i i i F
d  P P P P . The blending in this case is trivial: 

                                                      
* An alternative to arithmetic blending is called geometric or Riemannian blending. It is more involved but has a con-
ceptual advantage of traversing a geodesic on the manifold of symmetric positive definite matrices. The metric underly-
ing this approach is related to the geometric mean and is often used in studies of positive numbers, positive integrable 
functions, and positive definite operators.5 This type of blending is not included in the main body of the paper but can 
be found in the Appendix because, despite its conceptual advantage and interesting mathematics, it performs poorly for 
orbit covariances.  
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  ( ) ( ) ( 1)1i i i    P P P , (7)

and so is its rate of change: 

    ( ) ( ) ( 1) ( 1) ( ) 11 /i i i i i i it t            P P P P P   . (8)

Solution Properties 

The following properties are exhibited by the arithmetic blending.* 

Interpolation: it trivially follows from Eqs. (2, 7) that ( ) ( )i i it P P  and ( ) 1 1( )i i it  P P . 

Continuity and Smoothness: if tabulated covariances are obtained by a smoother then the re-
sulting blended covariances will satisfy continuity and smoothness conditions across abutting 
blending intervals. The continuity follows directly from the interpolation property above. The 
smoothness can be demonstrated by examining the blended rates at the recorded times. Let 

( ( ), )t tx f x  be the adopted approximate dynamical model and ( ( ), ) ( ( ), ) /t t t t  F x f x x  be 

its Jacobian evaluated along ( )tx . Then from Eq. (8) and using the boundary conditions imposed 

on ( )   by Eqs. (2, 4), it follows that at it  

 ( ) ( )( ) ( ) T
i i i i i i i it t   P P F P PF  (9)

where ( , )i i itF F x  is the Jacobian evaluated at time it  at the known state ix . An entirely anal-

ogous derivation can be carried out at time 1it  . Their comparison then reveals that at any record-

ed time 1it  , ( ) 1 ( 1) 1( ) ( )i i i it t   P P  , i.e. the blended rates computed for that time from the pre-

ceding and succeeding intervals are the same.  

Symmetric Positive Definiteness: this property requires the blending function to remain strictly 
between 0  and 1 for 0 1  . Then, both ( )   and 1 ( )   remain positive for 0 1  , 

which in turn guarantees that ( ) ( )i tP  is symmetric positive definite throughout  1,i it t t   

based on Eq.(7). 

Commutativity with Coordinate Transformation: let any two coordinate representations of the 

state x  and x  be related via ( , )tx λ x  with the Jacobian ( , ) ( ) / ( )t t t Λ x x x . Then, for 

covariances P  defined in coordinates of x  instead of x , it follows that the arithmetic blending 
based on Eq.(7) yields† 

                                                      
* The same properties are also exhibited by the geometric blending but that lies outside of scope of this paper. 
† It is assumed here that if state representations at some intermediate time t  are obtained by interpolation, then these 

representations x  and x  are still related by ( , )tx λ x . In practice, due to nonlinearities, some differences in the 

interpolated states may occur causing in turn small differences in the corresponding covariance interpolations. Also, 

note that the Jacobian transformation ( , )tΛ Λ x  at time t  is based on the actual state x  not the approximate 

state implied by the approximate state error transitions. 
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   

  
( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( )

1 1

1

T T
i i i i i

T T
i i i





   

 
 



     

   

P P P ΛP Λ ΛP Λ

Λ P P Λ ΛP Λ

  
 (10)

which demonstrates that the coordinate change    , ,x P x P  affects tabulated and blended 

covariances in the same way. In other words, whether starting with a coordinate transformation or 
starting with the proposed blending, the combined result is the same. 

Invariance under Coordinate Transformation: it follows from the commutativity property that 
converting first to a different coordinate representation, then blending and converting back pro-
duces the same result as applying that blending directly in the original coordinates. 

FACTORIZATIONS 

The blending approach is not limited to whole matrices. It can be also applied to various ma-
trix factorizations from which whole matrices can be reassembled. This may be advantageous if 
the blending of the factorized constituents, e.g. singular values, is better understood than the 
blending of whole matrices.  

Square Root 

The square root factorization uses the Cholesky decomposition to obtain the lower triangular 

square root matrix L  such that TP L L .6 The blending in this case resembles the arithmetic 
blending of the whole matrix P  but uses L  instead: 

  ( ) ( ) ( 1)1i i i    L L L . (11)

The constituent square root matrices are factorized from the constituent covariance matrices and 
the resulting covariance matrix is reassembled from the blended square root matrix. 

Sigma Correlation  

The sigma correlation factorization transforms the covariance matrix into a matrix with sigma 
values on its diagonal and correlation coefficients everywhere else. The resulting matrix is still 
positive definite and symmetric and, thus, can be blended using the same method. 

Complete Eigen-Decomposition 

The eigen-decomposition of a positive definite matrix produces a diagonal positive eigenvalue 
matrix and an orthogonal eigenvector matrix which can (in theory) be blended or interpolated 
separately. The first challenge of using this factorization is determining which eigenvalues from 
the constituent covariances should be paired up for blending (or interpolation). Woodburn and 
Tanygin3 advocate sorting both sets of eigenvalues by size and then pairing them up accordingly. 
The next challenge is determining the nearest rotation, i.e. determining the orthogonal matrix that 
rotates the eigenvector matrix of one covariance into the eigenvector matrix of the other covari-
ance along the shortest geodesic arc in ( )SO n . Once the arc is found, the blending (or interpola-
tion) can occur along the selected geodesic. After blending or interpolating the square roots of 
eigenvalues and rotating the eigenvector matrices, the resulting covariance can be reconstructed. 
For the three-dimensional case ( 3n  ) the problem is solved in Reference 3 but for higher-
dimensional cases the problem is significantly more challenging. Formally, it is possible to write 
for any dimension 
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  ( ) ( ) ( 1)1i i i    Σ Σ Σ (12)

and 

 
 

   
( ) ( ) ( ) ( 1) ( ) ( 1) ( 1)

1

( ) ( ) ( 1) ( ) ( 1) ( 1)

Exp( Log( )) Exp( 1 Log( ))T T
i i i i i i i

T T
i i i i i i



 

   



  

  

 

U U U U U U U

U U U U U U
, (13)

where the diagonal positive definite matrix Σ  and orthogonal matrix ( )SO nU  are defined 

from the eigen-decomposition 2 TP UΣ U .7 It is assumed that ( )iΣ , ( 1)iΣ  are properly sorted 

and that the nearest rotation between ( )iU  and ( 1)iU  is determined.* Note that, even if these as-

sumptions are met, raising higher-dimensional orthogonal matrices to a fractional power is still a 
numerically challenging procedure.8  

Block Decomposition (Cartesian Position-Velocity) 

The challenges of higher-dimensional eigen-decomposition can be alleviated in cases when 
covariance matrices are represented using Cartesian position and velocity. In these cases it is rea-
sonable to replace a complete six-dimensional eigen-decomposition with two independent three-
dimensional eigen-decompositions: one for the position portion and the other for the velocity por-
tion. Each can be performed as described in Reference 3. It is then also possible to blend the posi-
tion-velocity cross-correlation terms by applying sigma correlation method to the already block-
diagonalized matrices. Let covariance matrix using Cartesian position and velocity coordinates be 
represented as  

 
T

p

v

 
  
 

P W
P

W P
. (14)

Then the blended cross-correlation terms can be obtained using 

 
  1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( 1)1 1
( 1) ( 1) ( 1) ( 1) ( 1)

1 T
v i v i i p i p i T

i v i v i p i p iT
v i v i i p i p i

    





 

 
    

 
 
  

Σ U W U Σ
W U Σ Σ U

Σ U W U Σ
 (15)

where subscripts “p” and “v” correspond to the position and velocity related terms, respectively. 

CHOICE OF COORDINATES 

As indicated previously, the choice of covariance coordinates can affect performance of cer-
tain blending methods. The blending of whole covariance matrices is unaffected by the coordinate 
choice (see invariance under coordinate transformation property). Other methods that do involve 
factorizations, such as the square root, sigma correlation and eigen-decomposition methods, are 
affected by the coordinate choice.†  

                                                      
* Note that this method and its three-dimensional specialization described in Reference 3 use arithmetic blending for 
singular values and geometric blending for orthogonal eigenvector matrices. 
† The block decomposition method is by its very nature only applicable to certain coordinates. 
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Among the many different coordinate representations of the orbit state, the primary distinction 
important for this investigation is how quickly the first order perturbations in coordinates change 
over time. From this perspective, two representations, one using inertial Cartesian position and 
velocity, and the other using Keplerian elements, provide two characteristic examples: the former 
has perturbations in all coordinate changing relatively quickly, the latter has all but one of those 
perturbations changing relatively slowly. These effects on blending and interpolation are quanti-
fied using numerical examples later in the paper. 

Invariance of Whole Matrix Blending vs. Non-Invariance of Whole Matrix Interpolation 

The important distinction between blending and interpolation in different coordinates can be 
illustrated using the following simple example. Consider the simplest (linear) arithmetic blending  

  ( ) ( ) ( 1)1i linear i i    P P P (16)

for which the corresponding linear interpolation takes on a very similar form 

   11ilinear i i    P P P . (17)

The key difference is that ( )iP  and ( 1)iP  used for blending are propagated from iP  and 1iP  to 

the same time t . This is why blending performance is invariant with respect to coordinate chang-
es 

 
   

  
( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( )

1 1

1

T T
i linear i i i i

T T
i i i linear

   

 
 



     

   

P P P ΛP Λ ΛP Λ

Λ P P Λ ΛP Λ

  
 (18)

whereas interpolation performance 

   1 1 11 T T T
ilinear i i i i i i ilinear       P Λ PΛ Λ P Λ ΛP Λ (19)

is generally affected by them. Here, ( , )tΛ Λ x  and ( , )i i itΛ Λ x . Note that, even if the error 

transitions are reduced to trivial 1( ) ( )i it t Φ Φ I , the distinction between blending and inter-

polation remains valid: from the blending perspective the covariances ( )iP  and ( 1)iP , although 

now constant and identical to iP  and 1iP , are still propagated to the same time t . Hence, both 

( )iP  and ( 1)iP  should be transformed to new coordinates using the same Λ . This is different 

from what is done during interpolation where iP  and 1iP  are associated with their own times it  

and 1it  , and are, therefore, transformed using two different iΛ  and 1iΛ , respectively. 

APPLICATION TO ORBIT COVARIANCE 

Consider the advantages of the proposed blending method over classical interpolation when 
applied to orbit covariance.  

Arguably, the simplest case for which both approaches should work perfectly is when covari-
ance propagation is carried out along an exact two-body orbit and is parameterized in Keplerian 
elements. The state error transition matrix in this case is constructed as an identity matrix plus a 
single non-zero off-diagonal element9 
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    i iMa
m t t   with   3 / 2 / constm n a   (20)

where  rs
 denotes the rs  element of a matrix, M  denotes the mean anomaly, n  denotes the 

mean motion, and a  denotes the semi-major axis. The Jacobian of the two-body force model in 
these coordinates is constant with all elements equal to zero except for a single off-diagonal ele-
ment 

   /
Ma

M a m  J 
 (21)

Thus, covariance propagation from iP  at time it  to P  at time t  can be described in a closed pol-

ynomial form as 

    irs rs
P P  for r M , s M , (22)

        i i iMs Ms as
m t t  P P P  for  s M , (23)

and 

            222i i i i iMM MM aM aa
m t t m t t    P P P P  (24)

Note that, since the Jacobian J  is nilpotent and constant, covariance derivatives are trivial to 
compute: 

 T P JP PJ , 2 TP JPJ  and ( )n P 0  for 2n  (25)

Specifically, the first derivatives are 

  
rs
P 0  for r M , s M , (26)

    asMs
mP P  for  s M  and    2

aMMM
mP P , (27)

and the second derivatives are 

  
rs
P 0  except for     22

aaMM
mP P (28)

The above derivations are meant to demonstrate that polynomial basis functions should have 
no problem accurately interpolating orbit covariance propagated using a two-body force model. 
Indeed, even linear interpolation may be adequate over short interpolation intervals since having  

1m  makes it possible to neglect the quadratic term in Eq. (24) as long as   1im t t   and 

 i aa
P  is comparable or smaller than  i aM

P . Certainly, these derivations show that the high-

er order interpolating polynomials should capture two-body covariance propagation exactly.  

Similarly, the blending approach can easily handle this case: by construction, the two-body 
covariance propagations from it  and from 1it   to the same time t  will match. In other words in 
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the notation of this paper, ( ) ( 1)i iP P , and any blending function will trivially lead to the exact 

answer of ( ) ( 1)i i P P P  - a result that is independent from covariance coordinates and matrix 

factorizations. This type of invariance, however, is not found when using standard interpolation. 
Indeed, as can be seen from example in Reference 2, in Cartesian coordinates the higher deriva-

tives ( )nP  become progressively smaller but never vanish. Hence, while the two-body evolution 
of covariance elements in Keplerian coordinates is at most quadratic, their evolution in Cartesian 
coordinates cannot be exactly captured by interpolating polynomials of any order. 

The important practical question is how well the two approaches would perform when propa-
gation deviates from exact two-body. Both approaches can retain and employ some two-body 
approximations: the higher order interpolation polynomials can use two-body Jacobians to ap-
proximate the first and second derivatives of tabulated covariances1 while the blending can use 
approximate two-body error transitions.  

Numerical Tests 

The performances of various methods are examined using the following example. The LEO 
orbit is propagated from the initial state listed in Table 2 using Runge-Kutta-Fehlberg 7th order 
integrator with 8th order error control implemented in STK 10.10 The propagated ephemeris and 
covariance data recorded at every second represent the “truth”. 

Table 2. Example LEO Initial State. 

Reference Epoch 22 Nov 2008 19:00:00 UTCG 

Position in ICRF (X, Y, Z) -2397.20 km 4217.85 km 5317.45 km 

Velocity in ICRF (X, Y, Z) -1.3039 km/s 5.5589 km/s -4.8396 km/s 

Gravitational Constant 398600.4418 km3/s2 

 

The full force model is described in Table 3 with covariance propagation including the effects of 
gravity, drag and SRP. 

 Table 3. Full Force Model Parameters. 

Gravity Field WGS84_EGM96 21x21 

Tides Permanent Solid Tides and Ocean Tides 4x4 

Third Body Gravity Sun Moon 

Space Object Spherical  Area 20 m2 Mass 0.04 kg 

Drag Jacchia-Roberts (with flux file) Cd = 2.2 

SRP Dual Cone Shadow Model Cr = 1 

Eclipsing Bodies Earth Moon 

Albedo Simple Reflection Model 
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Relativity Correction Included 

 

The selected object is poorly tracked as evident from its very large initial error covariance (Table 
4). This in conjunction with its highly dynamic propagation environment provides a challenging 
test case for interpolation and blending techniques. 

Table 4. Example LEO Initial Error Covariance. 

Reference Epoch 22 Nov 2008 19:00:00 UTCG 

Position Sigmas in 
ICRF (X, Y, Z) 

98.676 km 420.547 km 366.438 km 

Velocity Sigmas in 
ICRF (X, Y, Z) 

0.194 km/s 0.341 km/s 0.430 km/s 

Position Correlations 
in ICRF (XY, XZ, YZ) 

-0.999985 0.999983 -0.999997 

Velocity Correlations 
in ICRF (XY, XZ, YZ) 

-0.999998 -0.999997 0.999997 

Cross-Correlations in ICRF 

 (Position X, Velocity 
X, Y, Z) 

-0.999982 0.999989 0.999983 

 (Position Y, Velocity 
X, Y, Z) 

0.999997 -0.999999 -0.999995 

(Position Z, Velocity 
X, Y, Z) 

-0.999996 0.999996 0.999999 

 

These challenges are highlighted in Figure 2 which displays evolution of the position sigmas and 
correlation coefficients in ICRF over 10 min interval.  Note that around the 476 second mark, 
when xx  reaches its sharp minimum of 0.56  km, some of the correlation coefficients transi-

tion rapidly between 1   and 1 . 

 

Figure 2. Evolution of Position Sigmas and Correlation Coefficients in ICRF over 10 min. 
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Two-Body Orbit. Consider first the challenges that even exact two-body propagation may pre-
sent to interpolation methods. Indeed, the following can be observed interpolating in Cartesian 
coordinates (see Figures 3, 4): the poor accuracy of linear interpolation is improved when using 
the higher order polynomials but the small errors still remain even for the quintic polynomials.*  

 

Figure 3. Position Sigma Errors Interpolating in ICRF in Cartesian Coordinates during two 5 
min steps along Two-Body Reference Orbit. 

 

Figure 4. Correlation Errors Interpolating in ICRF in Cartesian Coordinates during two 5 min 
steps along Two-Body Reference Orbit. 

By contrast, the same interpolating polynomials produce much better results when applied to the 
Keplerian elements (see Figure 5): in these coordinates even linear interpolation during 5 min 
steps is almost perfect† and, as predicted, the higher order polynomial interpolations are exact. 

                                                      
* The “true” and interpolated covariances are compared at 1 second steps. The data for interpolation is created by copy-
ing the “true” covariance data and then pruning it in accordance with the selected interpolation step. 
† The second order term in Eq. (24) is about 4 orders of magnitude smaller than the first order term in this case. 
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Figure 5. Position Sigma and Correlation Errors in ICRF Interpolating Keplerian Elements dur-
ing two 5 min steps along Two-Body Reference Orbit. 

Still, even in this most favorable case the blending approach is superior because using two-
body error transitions (trivially) produces results that are by construction exactly accurate regard-
less of factorizations, coordinates or blending functions used.  

Full Force Model Orbit. The practical tests of covariance interpolation must include a more 
physically realistic force model. The force model listed in Table 3 produces noticeable deviations 
from the two-body orbit and from the two-body error transitions. The tests using this force model 
are performed over longer interpolation intervals and over a longer period of time - 2 hours (see 
Figure 6).  

 

Figure 6. Evolution of Position Sigmas and Correlation Coefficients in ICRF over 2 hours. 

Since the low order polynomial interpolations perform poorly in these tests, for brevity, only 
results obtained by using the quintic polynomials are included in the paper. Even at this high or-
der, interpolation in Cartesian coordinates is significantly inferior to interpolation of the Kepleri-
an elements (see Figure 7). In particular, the errors in the ICRF Cartesian interpolation spike near 
the minimums of the ICRF sigma values when the correlation coefficients rapidly change signs. 
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Figure 7. Position and Velocity Sigma Errors in ICRF Interpolating in Cartesian Coordinates and 
in Keplerian Elements using Quintic Polynomials during three 40 min steps along Full Force Model 
Reference Orbit. 

The geometric blending also performs poorly in the full force model tests and so its results too 
are also omitted from the paper for brevity. The arithmetic blending performs well but shows lit-
tle variability for blending functions of different orders. Hence, again for brevity, only results 
based on the quadratic blending function are included in the paper. As stated previously, the 
choice of coordinates does not affect blending of whole matrices but can affect blending of square 
root or sigma correlation factorizations.* These results are illustrated in Figure 8 where the quad-
ratic blending of these factorizations in Cartesian and Keplerian coordinates is shown alongside 
with the quadratic blending of whole covariance matrices and their position/velocity block de-
compositions.  

 

Figure 8. Position Sigma Errors in ICRF Blending Various Decompositions using Quadratic 
Function during three 40 min steps along Full Force Model Reference Orbit. 

                                                      
* Complete eigen-decompositions of 6x6 matrices are not examined here as they would be too computationally costly. 
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The blending results for the whole covariance matrices and for their position/velocity block de-
compositions are virtually identical. Also, very close to them are the blending results for the Car-
tesian sigma correlation factorizations and the Keplerian square root factorizations. It is interest-
ing that the blending of Cartesian square root factorizations suffers from dramatic error spikes 
near some of the minimums of the ICRF sigma values, the effect that is not seen during the ICRF 
blending of whole covariance matrices. This demonstrates the dangers of applying non-physical 
mathematical fitting techniques in poorly selected (highly dynamic) coordinates.* In this light, it 
may seem surprising that the blending accuracy of the Keplerian sigma correlation matrices is 
noticeably worse than that of the Cartesian sigma correlation matrices. Note, however, that by 
construction the ICRF sigma values of the Cartesian sigma correlation matrices are blended iden-
tically to those of the original covariance matrices. The same cannot be said about the ICRF sig-
ma values created after blending of the Keplerian sigma correlation matrices: in this case, the er-
rors introduced by the non-physical mathematical fitting techniques applied in Keplerian ele-
ments propagate though Keplerian to Cartesian partials to all Cartesian values.  

To summarize, it appears that, when blending with two-body error transitions, the best chance 
to avoid unintended numerical behavior is to skip various factorizations in favor of a straightfor-
ward blending of whole covariance matrices. In essence, this minimizes the impact of non-
physical mathematical fitting in favor of the physical (albeit approximate) evolution of covariance 
matrices. 

The above conjecture leads to another question: is it possible to improve approximate error 
transitions without resorting to numerical integration of more sophisticated force models? After 
two-body gravity, one of the most important dynamical effects is due to J2 – the dominant non-
spherical contribution of gravity. It is possible to account for the secular effect of J2 by using the 
analytical error transitions based on Kozai mean elements11. The result of quadratic blending with 
the secular J2 error transitions is shown in Figure 9. It also shows the result of quadratic blending 
with the two-body error transitions and the result of interpolation using the quintic polynomials. 

 

Figure 9. Position and Velocity Sigma Errors in ICRF Interpolating in Keplerian Elements and 
Blending using Two-Body and using Secular J2 Error Transitions during three 40 min steps along 
Full Force Model Reference Orbit. 

                                                      
* A similar observation is made by Alfano in Reference 2 with regards to interpolation.  
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These results illustrate the best possible solutions to the covariance interpolation problem among 
all of the different interpolation and blending techniques considered in this paper. Note that, alt-
hough the sigma errors appear large in absolute terms, all of the errors are less than 0.4 % of the 
respective sigma values. This level of accuracy can be quite adequate for covariance data which is 
often expected to be known only with one or two significant digits. 

 In order to better assess the accuracy and robustness of the three best methods, they are ap-
plied over the same two hour interval but using covariances tabulated at different steps: 60 sec, 
300 sec, 600 sec, 1200 sec, 1800 sec, 2400 sec, and 3600 sec. For each test case, the maximum 
and the average RMS over the entire two hour interval are computed based on the RMS of errors 
recorded at 1 second steps. These are plotted in Figures 10-12 as functions of the covariance step. 
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    Figure 10. Maximum and Average Position Sigma Errors in ICRF Interpolating in 
Keplerian Elements and Blending using Two-Body and using Secular J2 Error Transitions 
as Functions of Covariance Step along Full Force Model Reference Orbit. 
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    Figure 11. Maximum and Average Velocity Sigma Errors in ICRF Interpolating in 
Keplerian Elements and Blending using Two-Body and using Secular J2 Error Transitions 
as Functions of Covariance Step along Full Force Model Reference Orbit. 
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    Figure 12. Maximum and Average Correlation Errors in ICRF Interpolating in Kep-
lerian Elements and Blending using Two-Body and using Secular J2 Error Transitions as 
Functions of Covariance Step along Full Force Model Reference Orbit. 

The quadratic blending with the two-body error transitions generally outperforms the other 
two methods for accurate interpolation of the position sigmas (see Figure 10) and the quintic in-
terpolation in Keplerian elements generally outperforms the other two methods for accurate inter-
polation of the velocity sigmas (see Figure 11). The quadratic blending with the secular J2 error 
transitions generally remains in between of the other two methods but significantly closer to the 
quintic interpolation in Keplerian elements (see Figures 10-12). The average RMS interpolation 
errors of the correlation coefficients are quite low (they are less than 0.0025 even with one hour 
interpolation step), however, the high maximum RMS errors indicate that occasional narrow 
spikes in correlation errors persist (Figure 12).    

DISCUSSION 

The best three methods for interpolating orbit covariance identified in the previous section all 
have comparable accuracy. However, they do differ in terms of their computational robustness 
and cost.  

The quintic interpolation is simple to evaluate in Keplerian elements but, assuming that covar-
iance data is stored natively in Cartesian coordinates, requires computing Cartesian to Keplerian 
and Keplerian to Cartesian partials. These are somewhat expensive computations which require 
special care for near-circular and near-equatorial orbits. A greater potential problem with this 
method is its inability to ensure positive definiteness of the interpolated covariance. This problem 
may seem unlikely because it can be argued that four of the five degrees of freedom of the quintic 
polynomials are spent matching the quadratic two-body behaviors at the end points of the interpo-
lation interval and that the remaining degree of freedom is simply used to linearly transition these 
behaviors through the interval. However, this is not a rigorous argument and at least in theory the 
quintic interpolation can lead to the loss of positive definiteness.  

The other two methods both use the blending approach and therefore guarantee positive defi-
niteness of the blended covariance. The secular J2 blending method, similar to the quintic interpo-
lation in Keplerian elements, requires additional transformations from and to Cartesian coordi-
nates, and therefore also suffers from additional computational costs.  
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The two-body blending method appears to be the most computationally straightforward, can 
be implemented easily in Cartesian coordinates, and ensures that the blended covariance remains 
positive definite via a simple well understood transition of its elements between the propagated 
two-body covariances. In addition, this method is shown to yield the most accurate interpolation 
of the position portion of orbit covariance which makes it especially attractive for CA applica-
tions. 

Reduction of Storage Footprint 

If accurate interpolation can be retained using covariances tabulated at longer steps, then the 
amount of stored covariance data required for the same analysis interval can be reduced. Consider 
binary storage of ephemeris and covariance data: the time is stored as a double precision value in 
seconds since reference epoch; the ephemeris is stored as 6 double precision values, 3 for Carte-
sian position and 3 for Cartesian velocity; the covariance is stored in a lower triangular form, as 
21 double precision values. Figure 13 shows storage footprints for various covariance steps over 
the analysis interval of 5 days.  
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    Figure 13. Storage Footprint as Function of Covariance Step over 5 day Interval. 

CONCLUSIONS 

This paper introduced a new approach for covariance interpolation based on blending of ap-
proximate error transitions. The approach guarantees positive definiteness of the blended covari-
ances and can be applied to both whole matrices and various factorizations. The approach is im-
plemented and tested for orbit covariance interpolation. The tests demonstrate that accurate, ro-
bust and efficient covariance interpolation can be obtained by a simple arithmetic blending of 
covariances propagated using two-body error transitions. Retaining accurate interpolation for co-
variances tabulated at longer steps provides an opportunity to reduce storage footprint of covari-
ance data which can be important for maintaining and accessing large catalogs. 
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APPENDIX 

Geometric Blending 

The geometric (or Riemannian) blending traverses a geodesic on the manifold of symmetric 
positive definite matrices. This manifold is equipped with a distance metric that is based on the 

principal logarithm of 1
( ) ( 1)i i


P P :* 1 2 1
( ) ( 1) ( ) ( 1) ( ) ( 1)( , ) Log( ) ln eig( )G i i i i i iF

d  
   P P P P P P . 

Formulation of geometric blending is more complicated than that of arithmetic blending (see 
Eq.(7)): 

  1 1
( ) ( ) ( ) ( 1) ( ) ( 1) ( 1)Exp( Log( )) Exp( 1 Log( ))i i i i i i i   

    P P P P P P P , (29)

which can also be written in one of the following equivalent forms: 

 
   
   

11 1
( ) ( ) ( ) ( 1) ( ) ( 1) ( 1)

11 1
( ) ( ) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1)

i i i i i i i

T T T T
i i i i i i i i i i

 



 

 
  

   
    

 

 

P P P P P P P

L L P L L L L P L L
 (30)

where, as before, L  is defined from TP L L  and obtained via the Cholesky factorization.6  
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* The eigenvalues of 
1

( ) ( 1)i i


P P  are guaranteed to be real positive even though the matrix itself is not symmetric.5 


